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The theory of synchronization studies the behavior of interconnected systems
of objects. In its silmplest case the problem is to ascertaln the conditions
for the existence and the stability of perjodic states. The general state-
ment of the problem, and also numerous examples of the appearance of syn-
chronizatlion in nature and technology are given 1in the paper by Blekhman
[1]. The problem of internal synchronization of a system of dynamic objects
under the action of weak linear couplings was considered by us in paper [2].

It is assumed below that the motion of an isolated obJect 1s described by
a system of differential equatlons which 1s close to a Liapunov system [ 3].
Consequently, in lsolated obJects for the generating approximation we realilze,
generally speaking, & nonisochronous periodic state whose period varles in
some finite or infinite range depending upon a certain parameter assocliated
in some way or other with the initial conditions. In order to have the pos-
sibility of adjusting the object frequency by means of that of the external
periodic perturbation being transmitted to the object by a weak coupling, in
this case it is required only that this frequency be included in the frequency
range of the 1isolated object. For internal syncrcnization, i.e. the synchro-
nization of the self-contalned interconnected system of objects on the whole,
it 1s required, naturally, that their frequency ranges intersect. It 1s
apparent that for systems having such obJects the tendency toward synchroni-
zation 1is the strongest.

The paper consists of four sections. In the first two sections the
problem 1s considered in the general formulation for the case of nearly simi-
lar objects. Existence conditions and the necessary stability conditions
are derived for the synchronous states. In the last two sectlions the resuts
obtained are used to lnvestigate the synchronizatlion of self-phasing of sys-
tems of almost-conservative objects which are located on & supporting body
of a sufficlently general form. A generalized integral stabllity criterlon

1s established for such a system.

1. In contrast to paper (2], we shall merely write down the equations of
motion of the interconnected system of objects with excluded coupling coordi-
nates. In other words, we shall assume that the coupling coordinates are in
the form of known functions.of the object coordinates. However, for the
case when resonance in the coupling coordinates ls absent, this assumption

1s quite rigorous.
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Synchronization of neariy-similar dynamic systems 593

Thus, we shall assume that the motion of the interconnected objects is
described by the system of equations

dx gy s=1,..,n
8t
= X (@) ~ #ui (2 - - Zmo 8 1) (i.—_ 1 m > (1.1)
Here m 1is the total number of objects, while n 1is the order of the
system describing the motion of each object. In system (1.1) for brevity

t
we denote Xs (Ii) = X‘ (z]i, « o sy xni)
fg'i (931, c ey Ty, t’ u) E= fsi (-7311’ P xnl; . ;Ilm, .. ooy Znms ta F)

When up = O we have m unconnected similar Liapunov systems

dx ° s=1,...,n
dtm = X, (2:°) (i 1 ’m) (1.2)
admitting of a family of perlodic solutilons
Tq = Ps (¢ + @y, ©) (1.3)

of perlod T = T(ec), depending on m+1 arbitrary real constants a,,...,
a,s ¢, &and defined in a certaln region of the phase space of the system.

The coupling functions g, are assumed to be continuous 1in the varlables
X, ,...» %, On all the trajectories of the generating solution (1.3), their
period 1s 2n 1in the time variable ¢ , and they are analytic with respect
to the positive parameter u , 1f pu 1s less than some y,

The variational equations of the generating system (1.2),

daxi s=1,...,n

= Pa(t + ) Ei + ... + P (¢ + ) Ewi (i =1: , m) (1.4)

where X, [t )]
Por () = g0 ior (1.5)

admit of m independent T(c)-perilodic solutions

o0 = @, (t + ai, €) 8u (=1, .., m (1.6)
which are obtained by differentiation of (1.3) with respect of the phases
a;,...» 0, 1n sequence, and admit of m linearly growlng solutions

O[O g bt d [l a=t o m @)

The latter solution can be obtained if we take the derivative with res-
pect to ¢ of the generating solution (1.3) as the solution of one of the
subsystems of (1.%), while the solutions of the other subsystems are set
equal to zero. The T(g)-periodic functions y,(t,e) have the form

— T ()
?/s(t C) acwl[T(c)t’c]

(1.8)

c'=¢C

and will be the solutlon of the inhomogeneous system
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49, 1 dT (o) .
T T Payi kb poa R T®) —gchps {t, & (s=1, ..., n) (1.9)

under the initial conditions

¥s (0, ¢) =

The system of equations adjoint to (1.4)

aq)s o, o)

dc

(1.10)

{]:si =1, ..,
= Pt e} byt b s A lmi =0 (jh . " ) (1.11)

om

also has m periodic solutions with period T(s) ,

”) = (t +- a4, ¢) &y (d==1, ... ,m) (1.12)

which, as a consequence of the exlistence of T{(¢)-periodic sclution of sys-
tem (1.9), satisfy condition

2 (Ps' (tv C) ‘-ps (ti C) =={) (113)
s—1
If ¢ 1is a simple roct of Equation
T (c) = 2n (1.14)

then the condition for the existence of a synchronous state in the intercon-
nected system of objects [3] is written in the form

Py, oo, a,) == 2 2 \ falo(t a6y ..o, @ (4 €); £, 0lx

xP, (8o, ) Oy dt =0 (=1, ..., m)
or, finally,
Pl ((11 s oon ey (l,“) s

113

in
=N\ o a0y @ 0 1 0V () A =
.
(U==1, ..., m) (1.15)

If under the condition that the roots of Equation (1.14) are not multiple,

system (1.15) admits of a solution for which the inequality

a{P, ...,

9P o Py 4:0 (1.16)

a(?.}, vy
1s satisfied, then for sufficiently small u to this solution there corre-
sponds & synchronous motion of the interconnected system with a unique fre-
quency, the sequential approximations to which can be sought in the form of
a formal series in powers of u

za (t) = @ (t + ai, ) pad’ pt L (1.17)

2, Passing on to the study of the stability of solution (1.6), we set
up the variational equation of the complete system (1.1),
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n m

=3 plt b a3 S s (FTh) 2

1 === 0, L, m
r=1 r=1 j=1

where

0w 3 (TR0 Y oy (el ) 2.2)
= dxriaxuj dxr]-
The parantheses in (2.2) signify that the corresponding quantities are
calculated for the generating approximation. By using the substitution of
N.A. Artem'ev [4], we shall seek particular solutions of system (2.1) in the

form
z = Wiy (2.3)

where n, 18 the 2n-periodic solution of the system

d n
N 2 Per (¢ + @) nri + 1 D) Z gy — @ (W) M + 02 (24)

dt
r=1 j=1

Let us confine ourselves to the consideration of the spproximations to
the critical roots only and assume a(0) = O . Then when u = O, system
(2.4) turns ito the variational equation system of the generating system
(1.4) which admits of a group of 2m solutions (1.6) and (1.7) corresponding
to the critical ©2m-fold zero root. Thus, all the indices of the elementary
divisors of the characterlstic determinant of the generating system which
correspond to the zero root, are equal two., Consequently (4], the character-
istic indices of system (2.1), which vanish when pu = O , must necessarily
be sought in the form of a series in powers of ui

a (p) = ap' - a + agp + ... (2.5)
If the 2n-perlodic solution of system (2.4) is sought in the form of the
series |
n,; = ns’io) + P""Lﬁ” -+ p,nsgﬂ -+ P,’/z . (26)
then the perlodic zero approximation has the form
nbf“) = Mg, (t -+ o c) (M, = const) (2.7)
The system of equatlons for determining the first approximation
d (1) n
nbl
Z Per (t + Qi) Tln - a1M1cPs (t + ay, ) (28)

r=\
according to (1.9), also admits of a 2n-periodic solution

n 2n .
T]st = — alMi.mTJ; Ys (t - Oy, C) -+ Ni(P: (t + ay, C) (‘_)9)
depending on the 2n constants ¥, and ¥,.

For n&” we get Equations
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(Z)

2, Por (t + @) 0¥ + D) }J Mg (¢ + a5 0) +  (2.10)

r=1 r=1 j=1
21 . . .
+ agle’{i ET—(C_)_/E Ys (t T G4, C) - a2Mi’Ps (t + s, C) - alN‘iqé {t + X, C)

Without proof let us write out the known identity [ 3]
n 27
. oP
13) : I
O\ @ (a4 o) dt = (2.11)
8, =10 I
and in correspondence with (1.13) let us introduce the following notation

)
St bt ) =5 D 0, — i 2.12)
8=1 s§=1

Then, the conditions for the existence of a 2n-periodic solution of sys-
tem (2.10) will take the form

m

> Nl R )M 0 Lot (1= it s 2.13
L 1j == ({==1,..,m) (x=a dT(c)Tﬁ) (2.13)
i=1
The condition for the solution of system (2.13) to be nontrivial 1s

aP; / 8a1 dPl / 6a

A(u):...............zo (2.14)
P, /du  ...0P, 3, —

Obviously, for the considered synchronous state to be stable it is neces-
sary that all the roots of Equation (2.14) be real and satlsfy condition

+ 0y <0 (2.15)

The necessary and sufficient stability conditions may be obtained after

43‘[2(112 ==

computing the second approximations a, to the characterlistlic indices, and
also the estimates of the characteristic indices, which, when y = 0, turn
into the pure imaginary roots of the varlational equatlons of the generating
system.

However, without dwelling on these questions,let us briefly consider the
case of internal synchronization under the assumption that the interconnec-
ted system of objects is self-contained in the whole. In this case the func-
tions f,, do not depend explicitly on time and relation (1.1%) does not
hold. The conditions for the exlstence of a synchronous state in the system

Py (o, .. .y O;m, €) = (=1, .., m) (2.16)
n TS(:) - )
= & fo lo (¢ + ap, €)oo oy @ (&4 am, €); 01, (¢ + oy, €)dt =0
s=1 0

satisfy the relations
Pi(a, ... 0m, &) =Pr(a+a,..., ontac 2.17)
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where, generally, o 1s an arbitrary constant. These conditions serve to
determine uniquely the parameter ¢ and the differences of the generating
phases q, —ah,.e.s 0ua-; —0,. A8 before, the necessary stability condition
has the form (2.15). However, one of the roots of determinant (2.1%) reduces
to zero because of (2.17), but this does not ihnfluence the stability by vir-
tue of the Andronov-Vitt theorem on the stability of pericdic solutions of
self-contained systems [5].

3. Let us consider a system of m nearly similar objects located on a
supporting body of general shape which in thls case willl play the role of
the coupling. The dynamic propertles of the supporting body are taken as
known. ‘We shall assume that for the two points ¥ and ¥ of the supporting
body we can uniquely determine a symmetric tensor of the second rank,
X(¥, ¥) =K(¥, ), such that the clsplacement w of the point N under the
action of a force Q 1located at point ¥ wilI be

u= K (M, N)Q 3.1)

Generally, the objects are almost conservative and are located at points
¥, (¢ =1,..., m) of the supporting body. Here, neglecting the infiluencesof
object rotatlon inertla, we shall characterize the action of the {th object
on the coupling uniquely by the inertial force ¥,

The equation in Fredholm form of the small oscillations of the coupling 1is

u(M, =\ KOLM[e ™02 4+ R4
W ' 3.2)

+ 3 Fd (N, M) - B, t)] dVy

i=1

where u(¥, ¢) 1s the displacement of the point ¥ of the supporting body,
p(¥) 1s the mass of a unit volume, R 1s the density of the dissipation
force, (¥, t) 1s the density of the external action on the supporting body,
which is 2n-perlodic in time. The integration 1s carrled out over the whole
volume ¥ of the supporting body, and &(¥, ¥) 1s the generalized delta~-
function satlsfying condition

1 if Mcss

\/6(N, M) dVy ={0 P

(9)
The motion of nearly similar objects in a moving coordinate system which
1s rigldly connected to some small nelghborhood of the point of fastening,
will be characterized by the relative generalized coordinates g,; (s=1,..,n).
By definition, the kinetic energy of the {th object will be

N .
roo A dr,; (g;) | ou(M;, 1)
1S g M dt ‘ o |

v=1

du (A[i’ t) ds ((]1) 1 ; (Bu(ﬂli, t) )'2 (33)

=Twlq @)+ —F— ——+3m at
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where 1, (g;) 1s the radius vector of the mass element m,; of the object
with number ¢ in the moving coordinate system (3.4}

N
m; == Z My, S‘l(ql) wm 2 My Tyi ({]L) T(H (([,“ 71) e 712 E A (1) ((h) qm (/'1

vask v=1 8,p=1

Obviously, m, is the total mass of the tth object, 8,(g,) is the vec-
torial static moment of the object relative to the point of fastening, and
T5.{42,,9,') 15 the relative kinetic energy, being & uniform, positive-definite
quadratic form in the generalized veloeltles g4,°. By assuming that the
potential energy of the object depends only on the relative gereralized

coordinates,
; = 1I; {g3) (3.5)

we get an expression for the force with which the object acts on the support~

ing body
d aT; azs; (q;) Pu (M, 1)

di g (M, oy et Mi — 55

F— (3.6)

Equation {3.2) of sma)l oscillations of the supporting body is rewritten
as

u (M, §) == glK(M M) S (@) + (3.7)
+ § KON Ry T, 0 - 1o (V) + 28V, My md D200 0k ay
() =1

Furthermore, we shall assume that the influence btensor ot the supporting
body c¢an he represented &s a bllinear expansion

K (M, N) == — 3‘

§=1 '1

(3.8

where X, are the elgenvalues and s,{g} are the vectorial eigenfunctions
of the body, satisfying the orthogonality and normality conditlons

S [(N) + 2} mid (N, M))6; (N)-0, (N)dVy =83 (j,1=1,2,..,0) (3.9)

v} i=t
We shall seek a solution of Equation {3.7} in the form of a serles

u (M, 1) = 2] 6 (M) ujt) (3.10)
=1
Let us introduce the following assumption on the nature of the force dam-
ping the oscillations of the supporting body

| 05N Ravy = phy (3.41)
%%
where g 1s a positive constant. In a specific sense this hypothesis
assumes the proportiocality of the internal resistance force to the rate of
change of the resisting force, and in the parsicular case of the ordinary
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girder, degenerates to the well-known Voigt hypothesis. For a purely quali-
tative estimate of the influence of the resistence force, such an assumption
is completely acceptable; all the more so since the coefficlent g , in
what follows, will be assumed to be a quantity of the order of the small
coupling parameter.

After substituting series (3.10) into Equation (3.7) and transforming
with due regard to (3.8), {3.9) and (3.11), we arrive &t the infinite system

w4 By + Ay 00; (M)-Si7 (@) + () =0 (=1,2,..)03.12)
i=1
Here
10 = { 6, navy (3.13)
(V)
The Lagrange equatlons for the motions of the objects, set up by the usual
methods with due regard to the relations

8 dSi (9’5) _ 3Si {g2) ,i__ GSi(qi) - a ds;(qi) (3 '14)
Ogsi 4t dq,; a  diy og,; dt )
have the form
d 0T (95 4;) oT; (95 44) a1l; (¢;)
dt aqsi - aqsi aqai +
o0}
+ 21 0;(M3) _«’%(q_)u =Quigng) ((Z7700) 349

j=1
and, the generalized forces {,, , characterizing the inflow and loss of ener-
gy, by virtue of the original assumption that the objects are nearly conser-
vative, are assumed to be quantities of the order of the small coupling para-
meter,

Let us introduce the new canonic variables ¢, and
Psi = 0T (@1, 9:)/0gsi’

and the Hamiltonilan function of the object H;(gy, pi). Here, by virtue of
the fact that the objects are nearly similar

H; (g, p) = H (gi, pi) -+ AH (g1, p1), Si (gs) = S(qs) + ASi(g:) (3.16)
Qsi(gi, ) = Qs (g5, @) + AQui (qis @)

In the latter relations the second terms are assumed to be guantities of
the order of the small coupling parameter relative to the first. Finally,
the equations of motion of the intercomnected system of objects, with an
accuracy up to a guantity of the first order of smallness inclusively, have
the form

. _0H(g; p) 0AH, (g;, p;) i=1,..,m 3.17
qai o aps‘i ( apsi ) (s=11"-7n) ( ) )
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{3.17}
cont.
. aH (g, p;)  OAH {g;, b)) . 88.
Psi'= = =5~ (w 043: + Qs{gi, 47) — 2(6 (M) —— w )

J—-l
m

. . N
w' -k My = — 2 (85 (M3) S” (@) — f5 () — (Bheus + Z 8; (M:) AS”: (¢3))
i:}_ i=1
i=12.. )
In (3.17) the terms in parantheses are assumed to be small and, moreover,
the group of conservative terms, reflecting the action of the coupling on
the object, is small by virtue of the assumption that the coupling is weak.

%, In the generating approximation we have nm uncoupled simllar self-
contained conservative subsystems

. oH (‘11 » i) ove M (g, p°
(96i°) = —5 bo'l““ ) (psi®) == — _.._5(]_5___!. ((=1,..,m) (41)
i si

admitting of T{e)-periodic solutions
gs° = g {t -, e} Psi® = pe {t - 0y, €) {4.2)
‘Each of the subsystems (4.1) admit of an energy integral which for the
considered solution (%.2) has the form
H(q, p) = h {0) (4.3)
Here the energy constant A 1is pesitive and 1s an analytie function of

parameter g ({sece [3]). The generating 2Zn-periodic solution of {4.1) is
characterized by the relation
T (c)y=2n (4.4)

If the functions o,(¢) and w,(¢) are 2n-perlodic solutions of Equation

+ My = f; (8, w4+ hw; =85 (g =1, 2,.)  {43)
then for the oscillations of the supporting body in the generating approxi-

mation we have m
uP = — o5 () — 2105 (M) (¢ + @) (4.6)
Feml
It is clear that we should assume the existence of the inequallty X,# X
{# is an integer) and by the same token we should exclude from consideration
the case of resonance in any of the normal coordinates of the supporting
body. The variational equeatlions of the generating system have the m peri-

odic solutions

gs (¢ + o, ) 8y, ps{t + ¢} Bix k=1,...,m)
with perlods of 2n . The corresponding family of 2r-periodic solutlons of
the conjugate system will be

- ps' ( - Uy, C) 61/‘, ([_5. (l oy, C‘) bi/;
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According to (1.15) the system of equations for determining the genera-
ting phases a,,..., a, , after some manipulations with due regard to the
fact that -

T (9AH (g, p) . 9AH (g, p) . |
°2—1{ T, q“}d““ (4.7)

acquires the form

Pi(ag, .. .yamyc) = Q(c) + D (ax, ¢) + Ry (0y, . . ., &m, ¢) =0 (4.8)

k=1,...,m)
where S
0=\ 0@ e d
0 s=1
2n co
Oy (o5, ©) = § X S'lq (¢ + ax, 1-0; (M) v, (¢) dt (4.9)
0 j=1
Ri(ay, -y om ) = § 30 S'lq (¢ + aiq )10, (M) 0(M,) wy'(¢ + a) de
0 j=1r=1

In the case of internal synchronization, the density of the external
action on the coupling, £(¥, t) = 0 and, as has already been said above,
Equation (4.4) does not hold. Here the conditions for the existence of a
synchronous state in the system

Pi(@y .. yapme)= Q) +FRi(@y, ..y Ome)=0 (k=1,.m (410)

because of (2.18) must be considered as a system of equations in the unknowns
€, 0 — Gy, .« oy Uy — Q. The functions ¢ and R, 1in (4.10) are deter-
mined from (4.9); however, here the integration s between the limits 0

and T(¢) . Turning to the investigation of the quantity R,, we integrate
the last relation in (4%.9) by parts, after which, taking (4.5) into account,
we get

2T (¢) oo M
Rk ((11, ey Oy, (') = — 5 — E Z [\Vj" (t -+ ak)+)\.,~w,-'(t—|—a,,)]-e,- (Ml‘) X
0 j=1r=1
4 Oj (IM,‘) -w,-' (t -+ (l,-) dt (411)
From (4.11) it immediately follows that
m T(c) oo
N Rilar ooyt = — § X @5+ M) uedt =0 (4.42)
k=1 0 j=1
If now we sum (4.10) with respect to % , then because of (4.12) we shall
have Q) =0 (4.13)

The frequency of the synchronous state, when couplings appear in the
generating approximation, 1s obviously not shifted. The equations for the
determination of the generating phases

Rk (aly c o ey By C) =0 (k=1,..,m) (4.14)
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because of (4.11) have the particular solution gq,= ... = q,=a A1if

0; (My) = 0; (M) b

where b(kf) are some scalar multi

T m multip
r

By setting up the expression for the mean from the period Lagrange func-
tion of the supporting body in the generating approximation

T(c) oo
1 o N
Ay, ..., an ) = S EZ (u;® — Aju;®) dt (4.15)
0 j=1
it is easy to verify the equality
oA
Ry = ~ da, (k=1,..,m) (4.16)

Turning to a stability investigation, let us note that the constant k
has a distinct physical meaning for conservative objects.

Indeed, of the basis of (2.12), (4.1) and (%.3),

n
oH
kzz(aq,

=1

89,(0,¢) sH
t=0 oc aps

ps (0, 0)) __dh(o)
t—g Oc T dc

(4.17)

Thus, for the stability of the obtalned synchronous state in the inter-~
connected self-contalned system, it 1s necessary that all the roots of
Equation

02A A
8,2 Koewn day 00,
e e e e e e =0 (4.18)
A A

except one which equals zero, should satlsfy condition

dT (c)/d

The reality of the roots of determinant (4.18) is ensured by its symmetry.

In the case of mechanical vibrators [1] the gyration period decreases
with a growth in the vibrator energy. Consequently d7T/4h < O and we arrive
at the minimum condition first formulated by Blekhman and Lavrov [6] and
then proved by Blekhman [7] conformably to systems of mechanical vibra-
tors or their mathematical analogs. This condition incidentally 1is not only
necessary but also sufficlent in the mentioned problem because of the speci-
fic method of introducing the small parameter (which was different from the
method used in the present paper).
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